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What the heck is Precision Nutrition?

Personalized Nutrition by Prediction of Glycemic

Responses
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Design personalized diet
to lower glycemic responses
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In Brief

People eating identical meals present
high variability in post-meal blood
glucose response. Personalized diets
created with the help of an accurate
predictor of blood glucose response that
integrates parameters such as dietary
habits, physical activity, and gut
microbiota may successfully lower post-
meal blood glucose and its long-term
metabolic consequences.
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How does the Modeling Work?
The Primary Endpoint

Primary Endpoint

Meal Test

Response
Curves




Motivation for
Primary Endpoint

* Post-prandial glucose response
(PPGR) curves were the primary
endpoint.

* There is an expected post-
prandial response to a meal
which will vary by individual.

e Post-prandial hyperglycemia may
be a risk factor for a whole host
of diseases.

This was a discovery science
project that searched for factors
that may explain interpersonal
differences in response (PPGR)
coming from an array of data.
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Walier Bradford Cannon Homeostasis is the state of
conditions maintained by
humans.

Examples include body
temperature, energy balance,
and blood sugar level.

The theory of homeostasis suggests that
individuals with post-prandial response to
meals that deviate more from homeostasis
than “normal” is a risk factor.

“‘ . v > | i 3 ..-'_'. 1
Born October 19, 1871

Walter Bradford Cannon - Wikipedia



Motivation for Primary Endpoint

Comes from the oral glucose tolerance test
(OGTT).

Higher curve displacement is associated
with higher risk of diabetes and
cardiovascular disease

Additional post-prandial analytes such as
triglycerides have been measured and
demonstrated predictive of metabolic risk

The mixed meal tolerance test (MMTT)
extends the concept of the OGTT: liquid
mixed macronutrient drink or solid mixed
macronutrient foods (e.g. bread, rice,
mixed meal, muffins)
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Data

Distillation

Making the data
“Al ready”
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Data Preprocessing

\

Data Exploration: Understanding Data/Quality
Assuarance

Feature Selection: Clustering/PCA/Recursive

Iterative “Sniff Checks”: Ensure that your data is
free from errors and ethical issues
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Machine learning modeling practices to support the
principles of Al and ethics in nutrition research

Diana M. Thomas & Samantha Kleinberg, Andrew W. Brown, Mason Crow, Nathaniel D. Bastian, Nicholas

Reisweber, Robert Lasater, Thomas Kendall, Patrick Shafto, Raymond Blaine, Sarah Smith, Daniel Ruiz,

Christopher Morrell & Nicholas Clark

Nutrition & Diabetes 12, Article number: 48 (2022) ‘ Cite this article

1806 Accesses ‘2 Citations ’ 10 Altmetric ‘ Metrics

NO “PUSH AND PLAY” FOR Al!
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The actual predictive

algorithm

Main
cohort

800 participants |~

Validation

cohort
100 participants

Personal features

Meal features

Time, nutrients,
prev. exercise

Meal
responses

Meal response predictor

| Train predictor

—
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. Leave-one-person-out

Boosted decision trees I
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Meal response prediction
x4000
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Predicted Measured

Use predictor to predict meal response

1

Trained on 800 with leave out one cross validation (R=0.68) -tested in 100 independent
samples (R=0.70)-Note R=0.71-0.77 was the intra-individual association.

Zeevi D, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015 Nov
19;163(5):1079-1094.



Adams B, Fidler K, Demoes N, Aguiar EJ, Ducharme
SW, McCullough AK, Moore CC, Tudor-Locke C,
Thomas D. Cardiometabolic thresholds for peak 30-
min cadence and steps/day. PLoS One. 2019

Why Decision Trees?
[7]
Time over 120 steps/min |
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Zeevi D, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015 Nov
19;163(5):1079-1094.
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A made up toy example: Suppose your trying to predict
PPGR iAUC from BMI and HbA1c
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Decision Trees

A made up toy example: Suppose your trying to predict

PPGR iAUC from BMI and HbA1c
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Build a regression tree to

predict the residuals from

the input variables.
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* Many decision trees that are “weak predictors”

 |teratively build up strong predictors from these
weak predictors.
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used as independentvariables to predict eachinternal molecule. The
random forest model (R package ‘caret’ and ‘RandomForest’), which
has been proven to have the best prediction accuracy, was used*’. The

* Decision tree-based algorithms are preferred
because you can input ordinal data (Likert Survey
data) AND continuous data together.

* Some machine learning models are designed just
for ordinal categorical data (PLS-DA) and some are
designed to handle only continuous data (neural
networks).

* Best practices: you need to try several models
including the baseline one.
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DEFENSE ADVANCED

RESEARCH PROJECTS AGENCY

There are two products from this
exercise:

The Explainable
Algorithm

* The algorithm itself.



